Použití oxidů vzácných zemin k výrobě fluorescenčních brýlí
Použití oxidů vzácných zemin k výrobě fluorescenčních brýlí
Aplikace prvků vzácných zemin Zavedené průmyslové podniky, jako jsou katalyzátory, sklářství, osvětlení a metalurgie, používají prvky vzácných zemin již dlouhou dobu. Tato odvětví, když se spojí, představují 59 % celkové celosvětové spotřeby. Nyní novější, rychle rostoucí oblasti, jako jsou slitiny baterií, keramika a permanentní magnety, také využívají prvky vzácných zemin, což představuje zbývajících 41 %. Prvky vzácných zemin ve výrobě skla V oblasti výroby skla se již dlouho zkoumají oxidy vzácných zemin. Přesněji řečeno, jak se vlastnosti skla mohou změnit přidáním těchto sloučenin. Německý vědec jménem Drossbach začal tuto práci v roce 1800, když patentoval a vyrobil směs oxidů vzácných zemin pro odbarvování skla. Ačkoli v surové formě s jinými oxidy vzácných zemin, toto bylo první komerční použití ceru. Cerium bylo v roce 1912 Crookesem z Anglie ukázáno jako vynikající pro absorpci ultrafialového záření bez zabarvení. Díky tomu je velmi užitečný pro ochranné brýle. Erbium, ytterbium a neodym jsou nejrozšířenějšími REE ve skle. Optická komunikace ve velké míře využívá křemičité vlákno dopované erbiem; strojírenské zpracování materiálů využívá křemičitá vlákna dopovaná ytterbiem a skleněné lasery používané pro inerciální fúzi využívají neodymem. Schopnost měnit fluorescenční vlastnosti skla je jedním z nejdůležitějších použití REO ve skle. Fluorescenční vlastnosti z oxidů vzácných zemin Fluorescenční sklo, jedinečné ve způsobu, jakým se může jevit jako obyčejné pod viditelným světlem a může vyzařovat živé barvy, když je excitováno určitými vlnovými délkami, má mnoho aplikací od lékařského zobrazování a biomedicínského výzkumu až po testovací média, trasovací a umělecké skloviny. Fluorescence může přetrvávat pomocí REO přímo zabudovaných do skleněné matrice během tavení. Jiné skleněné materiály pouze s fluorescenčním povlakem často selhávají. Během výroby vede zavedení iontů vzácných zemin do struktury k fluorescenci optického skla. Elektrony REE jsou zvednuty do excitovaného stavu, když je k přímému vybuzení těchto aktivních iontů použit příchozí zdroj energie. Emise světla delší vlnové délky a nižší energie vrací excitovaný stav do základního stavu. V průmyslových procesech je to zvláště užitečné, protože to umožňuje vložení anorganických skleněných mikrokuliček do šarže k identifikaci výrobce a čísla šarže pro mnoho typů produktů. Transport produktu není ovlivněn mikrokuličkami, ale při ozáření šarže ultrafialovým světlem vzniká zvláštní barva světla, což umožňuje přesné určení původu materiálu. To je možné u všech druhů materiálů, včetně prášků, plastů, papírů a kapalin. Obrovská rozmanitost mikrokuliček je poskytována změnou počtu parametrů, jako je přesný poměr různých REO, velikost částic, distribuce velikosti částic, chemické složení, fluorescenční vlastnosti, barva, magnetické vlastnosti a radioaktivita. Je také výhodné vyrábět fluorescenční mikrokuličky ze skla, protože mohou být dopovány v různé míře REO, odolávají vysokým teplotám, vysokému namáhání a jsou chemicky inertní. Ve srovnání s polymery jsou ve všech těchto oblastech lepší, což umožňuje jejich použití v produktech v mnohem nižších koncentracích. Relativně nízká rozpustnost REO v křemičitém skle je jedním z potenciálních omezení, protože to může vést k tvorbě shluků vzácných zemin, zejména pokud je koncentrace dopingu vyšší než rovnovážná rozpustnost, a vyžaduje zvláštní opatření k potlačení tvorby shluků.
Čas odeslání: Červenec-04-2022